Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29785196

ABSTRACT

BACKGROUND: The development of new therapeutic strategies to treat patients for leishmaniasis has become a priority. The antileishmanial activity of the strychnobiflavone flavonoid was recently demonstrated against Leishmania amazonensis and Leishmania infantum amastigotes and promastigotes. The biological effect of this molecule was identified due to its capacity to interfere in the parasite mitochondrial membrane; however, the underlying molecular mechanism remains unclear. METHODS AND RESULTS: In this study, a computational approach using bioinformatics was performed to screen biological targets of strychnobiflavone in L. infantum. Computational programs, such as the target fishing approach and molecular docking assays, were used. Results showed that the putative pathway targeted by strychnobiflavone in L. infantum is the methylglyoxal degradation superpathway, and one hydrolase-like protein was predicted to be the molecular target of this flavonoid in the parasites. CONCLUSION: In this context, this study provides the basis for understanding the mechanism of action of strychnobiflavone in L. infantum and presents a strategy based on bioinformatics programs to screen targets of other molecules with biological action against distinct pathogens.

2.
Parasitol Res ; 117(2): 391-403, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29248978

ABSTRACT

Leishmaniasis has become a significant public health issue in several countries in the world. New products have been identified to treat against the disease; however, toxicity and/or high cost is a limitation. The present work evaluated the antileishmanial activity of a new naphthoquinone derivate, Flau-A [2-(2,3,4-tri-O-acetyl-6-deoxy-ß-L-galactopyranosyloxy)-1,4-naphthoquinone], against promastigote and amastigote-like stages of Leishmania amazonensis and L. infantum. In addition, the cytotoxicity in murine macrophages and human red cells was also investigated. The mechanism of action of Flau-A was assessed in L. amazonensis as well as its efficacy in treating infected macrophages and inhibiting infection of pretreated parasites. Results showed that Flau-A was effective against promastigotes and amastigote-like forms of both parasite species, as well as showed low toxicity in mammalian cells. Results also highlighted the morphological and biochemical alterations induced by Flau-A in L. amazonensis, including loss of mitochondrial membrane potential, as well as increased reactive oxygen species production, cell shrinkage, and alteration of the plasma membrane integrity. The present study demonstrates for the first time the antileishmanial activity of Flau-A against two Leishmania species and suggests that the mitochondria of the parasites may be the main target organelle. Data shown here encourages the use of this molecule in new studies concerning treatment against Leishmania infection in mammalian hosts.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania infantum/drug effects , Leishmania mexicana/drug effects , Naphthoquinones/pharmacology , Animals , Erythrocytes/drug effects , Female , Humans , Macrophages/drug effects , Macrophages/parasitology , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred BALB C , Mitochondria/drug effects , Naphthoquinones/chemistry
3.
Exp Parasitol ; 153: 180-90, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25845753

ABSTRACT

The development of effective prophylactic strategies to prevent leishmaniasis has become a high priority. No less important than the choice of an antigen, the association of an appropriate adjuvant is necessary to achieve a successful vaccination, as the majority of the tested antigens contain limited immunogenic properties, and need to be supplemented with immune response adjuvants in order to boost their immunogenicity. However, few effective adjuvants that can be used against leishmaniasis exist on the market today; therefore, it is possible to speculate that the research aiming to identify new adjuvants could be considered relevant. Recently, Agaricus blazei extracts have proved to be useful in enhancing the immune response to DNA vaccines against some diseases. This was based on the Th1 adjuvant activity of the polysaccharide-rich fractions from this mushroom. In this context, the present study evaluated purified fractions derived from Agaricus blazei as Th1 adjuvants through in vitro assays of their immune stimulation of spleen cells derived from naive BALB/c mice. Two of the tested six fractions (namely F2 and F4) were characterized as polysaccharide-rich fractions, and were able to induce high levels of IFN-γ, and low levels of IL-4 and IL-10 in the spleen cells. The efficacy of adjuvant action against L. infantum was evaluated in BALB/c mice, with these fractions being administered together with a recombinant antigen, LiHyp1, which was previously evaluated as a vaccine candidate, associated with saponin, against visceral leishmaniasis (VL). The associations between LiHyp1/F2 and LiHyp1/F4 were able to induce an in vivo Th1 response, which was primed by high levels of IFN-γ, IL-12, and GM-CSF, by low levels of IL-4 and IL-10; as well as by a predominance of IgG2a antibodies in the vaccinated animals. After infection, the immune profile was maintained, and the vaccines proved to be effective against L. infantum. The immune stimulatory effects in the BALB/c mice proved to be similar when comparing the F2 and F4 fractions with a known Th1 adjuvant (saponin), though animals vaccinated with saponin did present a slight to moderate inflammatory edema on their hind footpads. In conclusion, the F2 and F4 fractions appear to induce a Th1-type immune response and, in this context, they could be evaluated in association with other protective antigens against Leishmania, as well as in other disease models.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Agaricus/chemistry , Antigens, Protozoan/administration & dosage , Leishmaniasis, Visceral/prevention & control , Polysaccharides/administration & dosage , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Drug Evaluation, Preclinical , Female , Humans , Interferon-gamma/immunology , Interleukin-10/immunology , Interleukin-4/immunology , Leishmania infantum/genetics , Leishmania infantum/immunology , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Mice , Mice, Inbred BALB C , Polysaccharides/immunology , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Spleen/drug effects , Spleen/immunology , Th1 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...